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Abstract This paper extends the previous studies by Wu [Wu TY (2001) Adv Appl Mech 38:291–353;
Wu TY (2005) Advances in engineering mechanics—reflections and outlooks. World Scientific; Wu TY
(2006) Struct Control Health Monit 13:553–560] to present a fully nonlinear theory for the evaluation of
the unsteady flow generated by a two-dimensional flexible lifting surface moving in an arbitrary manner
through an incompressible and inviscid fluid for modeling bird/insect flight and fish swimming. The original
physical concept founded by Theodore von Kármán and William R. Sears [von Kármán T, Sears WR (1938)
J Aero Sci 5:379–390] in describing the complete vortex system of a wing and its wake in non-uniform
motion for their linear theory is adapted and extended to a fully nonlinear consideration. The new theory
employs a joint Eulerian and Lagrangian description of the wing motion to establish a fully nonlinear
theory for a flexible wing moving with arbitrary variations in wing shape and trajectory, and obtain a fully
nonlinear integral equation for the wake vorticity in generalizing Herbert Wagner’s [Wagner H (1925)
ZAMM 5:17–35] linear version for an efficient determination of exact solutions in general.

Keywords Arbitrary trajectory · Flexible wing · Nonlinear unsteady wing theory ·
Wake vorticity theorem

1 Introduction

In the world of self-locomotion of aquatic and aerial animals by using lifting surfaces such as wings and fins
appended, there are several salient features of significance. First, the wings are in general large in aspect-
ratio, a feature that would suit for an unsteady lifting-line approach. Secondly, the periodic flapping of the
wing generally involves changes in surface-profile shape (or shape function), e.g. from a stretched–straight
pronation in downward stroke to a form with an arched camber and spanwise bending in upward supination
stroke. Further, in swift maneuvering, the wings may bend and twist asymmetrically to change and turn in
orientation and trajectory, e.g. in the beautiful performance of a humming bird using a figure-eight wing
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Fig. 1 The Lagrangian coordinates (ξ , η) adopted to describe arbitrary motion of a two-dimensional flexible lifting surface
moving along arbitrary trajectory through fluid in an inertial frame fixed with the fluid at infinity

flapping in keeping its body fixed in front of a flower, and then suddenly fleeting off in a flash. All these
features are so strongly nonlinear and time-varying that a comprehensively valid theory would have to
take all these factors fully into account.

Recently, a nonlinear unsteady wing theory has been introduced by Wu [1–3] along this approach to
provide an optimally unified analytical and numerical method for computation of solutions on specific
premises. This nonlinear theory has been applied by Stredie [4] and Hou et al. [5,6] to perform computa-
tions of a number of unsteady motions of bodies shedding vortex sheet(s), attaining results of high accuracy
(as measured versus relative errors and experiments available) in all the cases pursued. The present work is
devoted to establishing a fully nonlinear theory for a two-dimensional flexible wing moving with arbitrary
changes in wing shape and trajectory along the approach led by Wu [1–3] with intent to optimize the
analytical and computational tasks required for attaining exact solutions efficiently.

2 Wing movement with arbitrary changes in shape and trajectory

We first recapitulate the nonlinear theory [1–3] of a two-dimensional arbitrary flexible lifting surface for
modeling aquatic and aerial animal locomotion at high Reynolds number. We opt for two-dimensional
theory for its simplicity to provide a foundation for further development of unsteady wing theory and for
general applications.

In this respect, we find that of the existing linear theories, the simple and clear physical concept crystal-
lized by von Kármán and Sears [7] in providing such a general view on an ingenious restructuring of the
vorticity distribution over the wing and its trailing wake is readily found to afford powerful generalizations.
So it has been extended by Wu [1, Sect 6] to account fully for all possible nonlinear effects in theory, and
bring Herbert Wagner’s pioneering work [8] to more general applications. The principal step is to employ a
joint Eulerian and Lagrangian description of the lifting-surface movement for the formulation and analysis
which we will delineate synoptically next. This useful description of unsteady bodily movement has also
been applied by Lighthill [9] to develop a large-amplitude elongated-body theory.

Thus, we consider the irrotational flow of an incompressible and inviscid fluid generated by a two-
dimensional flexible lifting surface Sb(t) of negligible thickness, moving with time t through the fluid in
arbitrary manner. Its motion can be described parametrically by using a Lagrangian coordinate system
(ξ , η) to identify a point X(ξ , t), Y(ξ , t) on the boundary surface S(t) = Sb(t) + Sw(t) comprising the body
surface Sb and a wake surface Sw, with S(t) lying at time t = 0 over a stretch of the ξ -axis (at η = 0) and
moving with time t(≥0) as one that can be prescribed by complex variable z = x + iy = Z(ξ , t) (see Fig. 1),
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parametrically in ξ as

Z(ξ , t) = X(ξ , t) + iY(ξ , t) on Sb(t) : (−1 < ξ < 1) + Sw(t) : (1 < ξ < ξm) (1)

with the leading and trailing edges of the wing at ξ = −1 and ξ = 1, respectively. From the trailing edge a
vortex sheet is assumed being shed smoothly (i.e., under the Kutta condition) to form a prolonging wake
Sw, and ξm identifies the path Z(ξm, t) of the starting vortex shed at t = 0 to reach ξm = ξm(t) at time
t. A simple choice for (ξ + iη) is the initial material position of Sb(t = 0), taken to be in its stretched–
straight shape such that Z(ξ , 0) = ξ(−1 < ξ < 1, η = 0), lying in an unbounded fluid initially at rest in an
absolute inertial frame of reference. The flexible Sb(t) is assumed to be inextensible (|Zξ | ≡ |∂Z/∂ξ | = 1, or
X2

ξ +Y2
ξ = 1, |ξ | < 1) and the point ξ on Sb(t) moves with a prescribed (complex) velocity W(ξ , t) = U − iV,

W(ξ , t) = U − iV = ∂Z/∂t = Xt − iYt (|ξ | < 1, t ≥ 0; Z = X − iY), (2)

which has a tangential component, Us(ξ , t), and a normal component, Un(ξ , t), given by

W∂Z/∂ξ = (Xξ Xt + Yξ Yt) − i(Xξ Yt − Yξ Xt) = Us − iUn, (3)

and with the same expression for the wake surface Sw(t) for (1 < ξ < ξm).
In the spirit of von Kármán and Sears [7], we adopt for t > 0 the following vorticity distribution:

on Sb(t): = γ (ξ , t) = γ0(ξ , t) + γ1(ξ , t) (−1 < ξ < 1),

on Sw(t): = γ (ξ , t) = γw(ξ , t) (1 < ξ < ξm),

where γ0(ξ , t) is the bound vortex distributed over Sb representing the “quasi-steady” flow past Sb such
that the time t in the original prescribed W(ξ , t) is frozen to serve merely as a parameter in evaluating the
quasi-steady γ0 (by steady airfoil theory), and γ1(ξ , t) is the additional bound vortex on Sb induced by the
trailing wake vortex γw(ξ , t) such that γ1 and γw jointly bear no change to Un (but not so to Us) over Sb so
as to reinstate the original time-varying normal velocity Un(ξ , t) prescribed on Sb(t).

Thus, we represent the velocity field by a vorticity distribution, γ (ξ , t), per unit length spanwise over the
body and wake surfaces to give at time t the complex velocity w(z, t) = u − iv of the fluid at a field point z
as

w(z, t) = 1
2π i

∫ ξm

−1

γ (ξ , t)
Z(ξ , t) − z

dξ (z = x + iy /∈ S, t ≥ 0). (4)

Applying Plemelj’s formula to (4) yields for w± = lim w(z(ξ + iη), t) as η → ±0 on the two sides of S as

u±
s − iu±

n = w±(ξ , t)
dZ
dξ

= ±1
2
γ (ξ , t) + 1

2π i
dZ
dξ

∫
S

γ (ξ ′, t)
Z′ − Z

dξ ′ (Z, Z′ ∈ S, t ≥ 0), (5)

with Z = Z(ξ , t), Z′ = Z(ξ ′, t) both on S, and the integral assuming Cauchy’s principal value. From (5),

γ (ξ , t) = u+
s − u−

s (−1 < ξ < 1 + ξm), (6)

u+
n (ξ , t) = u−

n (ξ , t) = Re

{
1

2π

dZ
dξ

∫
S

γ (ξ ′, t)
Z′ − Z

dξ ′
}

, (7)

usm ≡ 1
2
(u+

s + u−
s ) = Im

{
1

2π

dZ
dξ

∫
S

γ (ξ ′, t)
Z′ − Z

dξ ′
}

. (8)

Here, (7) shows the continuity of normal velocity u+
n = u−

n = un across S and (8) gives the algebraic mean
of the tangential velocity us on S. From (7)–(8) we deduce the contributions made separately by γ0, γ1, and
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γw as:

Un(ξ , t) = Re

{
1

2π

dZ
dξ

∫ 1

−1

γ0(ξ
′, t)

Z′ − Z
dξ ′

}
(Z = Z(ξ , t) ∈ Sb), (9)

U1n(ξ , t) = Re

{
1

2π

dZ
dξ

∫ ξm

1

γw(ξ ′, t)
Z′ − Z

dξ ′
}

(Z = Z(ξ , t) ∈ Sb), (10)

−U1n(ξ , t) = Re

{
1

2π

dZ
dξ

∫ 1

−1

γ1(ξ
′, t)

Z′ − Z
dξ ′

}
(Z = Z(ξ , t) ∈ Sb), (11)

Wj(ξ , t) = Uj − iVj = 1
2π i

∫
Sb+Sw

γ (ξ ′, t)
Z′ − Z

dξ ′ (Z = Z(ξ , t) ∈ Sw, ξ > 1), (12)

where Wj(ξ , t) = Uj − iVj is the jet-stream mean flow velocity averaged across the wake vortex sheet Sw

which results from combining (7)–(8), giving, by (3), Uj and Vj as the x- and y-component of the wake fluid
velocity on Sw.

The problem can now be recast to delineate the course for solution as follows. Equation 9 follows from
invoking the condition that un(ξ , t) = Un(ξ , t), which is given at Sb, to give an integral equation for γ0
which is to be solved, with time t frozen and without any unsteady wake, by applying steady airfoil theory.
The velocity induced on Sb by the wake vorticity γw (while being transported with velocity Wj of the fluid
particles on the wake) has the normal component U1n given by (10), which is canceled out as is required
of γ1 on Sb according to (11), so that the sum (10)+(11) gives an integral equation for γ1 in terms of γw.
This solution for γ1, which is to be determined under the Kutta condition (on the continuity of vorticity,
and hence also the flow velocity bounded at the trailing edge) may be expressed, in principle, symbolically
with a kernel K(ξ ′; ξ , t) in the form

γ1(ξ , t) =
∫ ξm

1
K(ξ ′; ξ , t)γw(ξ ′, t)dξ ′ (|ξ | ≤ 1). (13)

Finally, we apply Kelvin’s theorem that the total circulation around Sb + Sw must vanish ∀t ≥ 0, i.e.
�0 + �1 + �w = ∫

Sb
(γ0 + γ1)dξ + ∫

Sw
γw dξ = 0 (if it is zero initially), or, symbolically,

�0 +
∫ ξm

1

{
1 +

∫ 1

−1
K(ξ ′; ξ , t)dξ

}
γw(ξ ′, t)dξ ′ = 0. (14)

This is in essence the “generalized Wagner’s integral equation” formally for wake vorticity γw. Its original
linear version, attained by Wagner [8] and expounded by him and by von Kármán and Sears [7], has played
a key role in finding the entire vorticity distributions and the final solutions of high accuracy to various
linearized problems.

For the present nonlinear theory, it is of interest to derive the kernel K(ξ , ξ ′, t) in closed form for effi-
cient applications to wing movement in arbitrary manner. Such a desired integral equation has been first
explicitly given by Wu [1], however in a rather lengthy series form by perturbation expansion. Another
attempt has been made by Wu [3] to obtain an integral equation for γw by an integral iteration algorithm,
with specific formulas for efficient computational application. The present work attempts to accomplish
the theory fully generalized by including all possible nonlinear effects as fully as comprehended.
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Fig. 2 The wing
movement consists of (i)
rectilinear translation
with velocity (∂Z0/∂t) at
incidence angle α(t), (ii)
rotation with angular
velocity �(t), and (iii)
unsteady camber function
Ẑ(ξ , t) = X̂ + iŶ, Ŷ =
F(X̂, t)

3 A unified method of solution

Here, the method proposed by Wu [1–3] based on a unified analytical-and-numerical scheme is further
pursued to completion. Thus, following Wu [3], we first rewrite (9) as

Un(ξ , t) = 1
2π

∫ 1

−1
{1 + g(ξ ′, ξ , t)}γ0(ξ

′, t)
ξ ′ − ξ

dξ ′,

g(ξ ′, ξ , t) = Re

{
dZ
dξ

ξ ′ − ξ

Z′ − Z

}
− 1 (∀(ξ , ξ ′) ∈ Sb). (15)

As has been noted, if Sb is a flat wing, held at an arbitrary angle θ with the x-axis, we have, ∀(ξ , ξ ′) ∈ Sb,

Z(ξ) − Z(ξ ′) = eiθ(t)(ξ − ξ ′) −→ g(ξ ′, ξ , t) = 0, (16)

holding for arbitrary movement of the flat wing. For wings with arbitrary continuous camber, g(ξ ′, ξ , t) is
seen to be a regular function of ξ , ξ ′∀t ≥ 0, especially in view of the characteristics that

g(ξ ′, ξ , t) = O(|ξ ′ − ξ |) as ξ ′ → ξ , (17)

and further is quadratic in the camber (see (22)). We can therefore call g(ξ ′, ξ , t) the residual kernel, and
its integral, the residual integral, which is of a form apt for iteration with rapid convergence.

For the body shape, Sb can always assume a shape function Z(ξ , t) and a general camber function
Ẑ(ξ , t) ∈ C1∀ξ [−1, 1] with respect to the ‘absolute frame of reference’ so that Z(ξ , t) can be prescribed as

Z(ξ , t) = Z0(t) + eiθ Ẑ(ξ , t) (−1 ≤ ξ ≤ 1),

Ẑ(ξ , t) = X̂(ξ , t) + iŶ(ξ , t) = X̂(ξ , t) + iF(X̂(ξ , t), t), (18)

(see Fig. 2). Here, Z0(t) is the origin of Ẑ(ξ , t), θ(t) is the slope angle measured from the x-axis to the wing
chord which passes through the leading edge at Z(−1, t) and the trailing edge at Z(+1, t) of the wing, and
Ŷ(ξ , t) = F(X̂(ξ , t), t) stands for the real camber function, assumed regular. For convenience, we choose
Z0(t) to be the projection of the wing central point Z(0, t) onto the chord, i.e., by (18), with X̂(0, t) = 0,

Z0(t) = Z(0, t) − ieiθ Ŷ(0, t), (19)

the leading and trailing edges at Ẑ(−1, t) = −a(t), Ẑ(1, t) = b(t), c(t) = a(t) + b(t) being the chord length.
Next, for the inextensibility condition on the wing arc, we invoke |∂Z/∂ξ | = |∂Ẑ/∂ξ | = 1, giving

{
1 +

(
∂F

∂X̂

)2
}1/2 ∣∣∣∣∣

∂X̂
∂ξ

∣∣∣∣∣ = 1. (20)
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For ∂X̂/∂ξ > 0, which is ordinarily the case, we have

ξ =
∫ X̂

0

{
1 +

(
∂F

∂X̂

)2
}1/2

dX̂ (−1 ≤ ξ ≤ 1), (21)

from which follows X̂(ξ , t) by quadrature and inversion, and Ŷ(ξ , t) = F(X̂(ξ , t), t). In case of certain
symmetry, e.g. a circular-arc wing, suitable parametric simplification may prevail for applications.

With X̂(ξ , t) and Ŷ(ξ , t) so determined, the residual kernel becomes

g(ξ , ξ ′, t) = X̂ξ
X̂ + Ŷξ
Ŷ

(
X̂)2 + (
Ŷ)2
− 1

(
X̂ξ ≡ ∂X̂

∂ξ
, 
X̂ ≡ X̂(ξ , t) − X̂(ξ ′, t)

ξ − ξ ′

)
, (22)

and similarly for Ŷξ and 
Ŷ, (−1 ≤ ξ , ξ ′ ≤ 1). For a flat wing, X̂(ξ , t) = ξ , Ŷ(ξ , t) = 0, hence g(ξ , ξ ′, t) = 0
as in (16). For wings of small camber, Eqs. (21)–(22) imply g being quadratic in the camber (maximum
|Ŷ|∀t ≥ 0).

For given Z(ξ , t) of Sb(t), its surface (complex) velocity W = U − iV is, by (2) and (18),

W(ξ , t) = ∂

∂t
Z(ξ , t) = ∂

∂t
(X − iY) = [(U0 − iV0) + i�(X̂ − iŶ) + (X̂t − iŶt)]e−iθ , (23)

which prescribes the wing movement consisting in general of a translation with velocity dZ0/dt =
(U0 + iV0) exp iθ , which defines (U0, V0), a rotation of the wing chord about Z0 with clockwise angular
velocity � = −dθ/dt (+ive for nose-up by convention), and a camber variation at the rate (X̂t +iŶt) exp(iθ).
Hence by (3),

Us(ξ , t) = (U0 + �Ŷ + X̂t)X̂ξ + (V0 − �X̂ + Ŷt)Ŷξ , (24)

Un(ξ , t) = (V0 − �X̂ + Ŷt)X̂ξ − (U0 + �Ŷ + X̂t)Ŷξ . (25)

The normal velocity Un of Sb(t) will provide the kinematic flow condition (9) at Sb, and the tangential
component Us may serve to give the slip velocity between Sb and its adjacent fluid and to verify the wing
being inextensible, if needed. So, with body motion (18) given, the surface velocity of Sb(t) is completely
determined.

After substituting the exact expression (25) for Un(ξ , t) in integral equation (15) for γ0(ξ , t), the leading
term with the Cauchy kernel can be inverted by steady airfoil theory [1], i.e., letting G0γ00 = Un(ξ , t),
where

Un(ξ , t) = 1
2π

∫ 1

−1

γ00(ξ
′, t)

ξ ′ − ξ
dξ ′ ≡ G0γ00, −→ γ00(ξ , t) = G−1

0 Un (|ξ | < 1), (26)

γ00(ξ , t) = − 2
π

√
1 − ξ

1 + ξ

∫ 1

−1

√
1 + ξ ′
1 − ξ ′

Un(ξ ′, t)
ξ ′ − ξ

dξ ′ ≡ G−1
0 Un, (27)

where G0 denotes the integral operator and G−1
0 its inverse (i.e., G−1

0 G0 = G0G−1
0 = 1) as designated.

Applying this inversion to (15) in its entirety yields the following reduced integral equation for γ0 as

γ0(ξ , t) = γ00(ξ , t) + Hγ0, γ00(ξ , t) = G−1
0 Un,

Hγ0 ≡
∫ 1

−1
γ0(ξ

′, t)h(ξ ′, ξ , t)dξ ′, h(ξ ′, ξ , t) = 1
π2

√
1 − ξ

1 + ξ

∫ 1

−1

√
1 + ζ

1 − ζ

g(ξ ′, ζ , t)dζ

(ξ ′ − ζ )(ζ − ξ)
. (28)

For a flat wing, the solution for γ0 is γ0 = γ00 = G−1
0 Un since Hγ0 = 0 due to g = 0 by (16). For cambered

wings, γ0 can be easily solved by iteration, using γ
(k)
0 (ξ , t) = γ00(ξ , t) + Hγ

(k−1)
0 , (k = 1, 2, · · · ) under the

integral operator H, with γ
(0)
0 = 0. In fact, the iteration by successive substitutions readily yields

γ0(ξ , t) = (1 + H + H2 + · · · )γ00(ξ , t) = (
∑∞

m=0 Hm)G−1
0 Un, (29)
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provided that the process converges for prescribed time-varying camber distribution so that

γ0(ξ , t) = G−1
0 (1 + N0)Un(ξ , t) (N0 = G0(

∑∞
m=1 Hm)G−1

0 ) (30)

in which N0 is the nonlinear integral operator (just determined exactly by iteration) to represent the
nonlinear effects due to the camber distribution which is instantaneously frozen at each time step. Being
quadratic in the wing camber, N0 vanishes for flat wing and its series expansion for cambered wings is
expected to converge reasonably rapidly in general. This solution for γ0 contributes a circulation �0(t)
around the wing as

�0(t) =
∫ 1

−1
γ0(ξ , t)dξ = −2

∫ 1

−1

√
1 + ξ

1 − ξ
(1 + N0)Un(ξ , t)dξ (31)

in which the multi-integrals have all been reduced in number by one (with G−1
0 integrated out), leaving

the term with N0 to give the nonlinear non-stationary camber effects on �0(t).
For the wake-induced bound vortex γ1, the complete analogy between (11) and (9) can be used to imply

for γ1 the solution which can first be written formally by analogy with (30) as

γ1(ξ , t) = −G−1
0 (1 + N0)U1n(ξ , t), (32)

followed by having the unknown U1n(ξ , t) eliminated by applying (10) which we rewrite, like (15) for (9),
as

U1n(ξ , t) = 1
2π

∫ ξm

1
{1 + g1(ξ

′, ξ , t)}γw(ξ ′, t)
ξ ′ − ξ

dξ ′ (|ξ | < 1), (33)

where g1(ξ
′, ξ , t) has the same expression as g(ξ ′, ξ , t) of (15) but differs from it in range by having

Z(ξ , t) ∈ Sb but Z′ = Z(ξ ′, t) ∈ Sw. As a result, unlike g(ξ ′, ξ , t) being always small for Sb with a small
camber, as shown by (22), g1(ξ

′, ξ , t) can become finite in magnitude, especially when Sb displaces itself
by a finite amount at fast rate from a straight trajectory in the space. In such cases, the wake vortices can
give rise to finite nonlinear effects on the flow field aside from the local nonlinear effects due to changes in
body shape according to (15).

In general, substituting (33) for U1n in (32), we can readily derive for the total circulation around the
wing due to γ1, �1 = ∫

Sb
γ1(ξ , t)dξ , to obtain the following result

�1(t) =
∫ ξm

1

{√
ξ + 1
ξ − 1

− 1 + Nw(ξ , t) + Nb(ξ , t)

}
γw(ξ , t)dξ , (34)

Nw(ξ , t) = 1
π

∫ 1

−1

√
1 + ξ ′
1 − ξ ′

g1(ξ , ξ ′, t)
ξ − ξ ′ dξ ′, (35)

Nb(ξ , t) = 1
π

∫ 1

−1

√
1 + ξ ′
1 − ξ ′ N0(ξ

′, t)
1 + g1(ξ , ξ ′, t)

ξ − ξ ′ dξ ′. (36)

Finally, we apply Kelvin’s theorem as we have expounded for (14) to obtain for γw the integral equation

�0(t) +
∫ ξm

1

{√
ξ + 1
ξ − 1

+ Nw(ξ , t) + Nb(ξ , t)

}
γw(ξ , t)dξ = 0. (37)

This is the general wake-vorticity theorem expressed in terms of a nonlinear wake-vorticity integral equa-
tion for γw, which the wake vorticity γw must satisfy. It generalizes Wagner’s integral equation for the linear
case to account fully for a flexible wing in arbitrary movement. In this equation, �0(t) has a component in
(31) with kernel N0(ξ , t) representing the local nonlinear effects on �0 due to changes in body shape. In the
wake integral, the term with Nw(ξ , t) represents the nonlinear wake effects primarily due to finite changes
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in orientation and velocity of body movement. The other term with Nb(ξ , t) represents the nonlinear effects
due jointly to changes in body shape and their wake effects, since it vanishes, by (16), for a flat wing. In the
linear limit, both Nw and Nb vanish, reducing (37) to Wagner’s integral equation.

In computation, the motion of Sb is first prescribed for t ≥ 0. In a small time interval δtk at t =
tk > 0 (k = 1, 2, · · · ), a new small segment δξk of Sw is created just downstream of the trailing edge (at
ξ = 1). At the very first step, k = 1, invoking Kelvin’s theorem on the variation δ�0 = −δ(�1 +�w) reduces
(37) to yield

− δ�0(t) =
∫ 1+δξ1

1

{√
ξ + 1
ξ − 1

+ Nw(ξ , t) + Nb(ξ , t)

}
γw(ξ , t)dξ (δξ1 = |W(1, t) + Wj(1, t)|δt), (38)

where W(1, t)δt is a segment of the prescribed trajectory traversed in δt by the trailing edge, and Wj(1, t)δt
is the contribution by convection of (12) with the jet-stream leaving the trailing edge. For 0 < δξ1 	 1, the
wake vorticity γw(ξ , t) shed continuously into δξ1 of Sw can be determined, by analysis and numerics, accu-
rately from (38) by adapting method [7] of von Kármán–Sears to the present nonlinear case with iteration.
Once this γw(ξ , t1) is determined, it will move on with the local fluid, keeping invariant in magnitude (by
Helmholtz’s theorem), with velocity Wj(ξ , t) for ξ > 1, t > t1, starting from δZ(ξ , t1) = (W(1, t)+Wj(1, t))δt
to its new position δZ(ξ , tk), while en route continuously inducing the new γ1(ξ , tk) and hence the shedding
of new wake vortex γw(ξ , tk)(k = 2, 3, . . .). Because of the invariance in magnitude of γw after being shed,
formula (38) will continue to hold (∀t = 2, 3, . . .) with δξ1 in (38) replaced by δξ2, δξ3, . . ., in successive time
steps. Thus, the method for solving (37) consists of finding the analytical solution to (38) for the leading
term, followed by numerical iterations for the higher-order terms. As a remark, if the shed γw(ξ , tk) is
discretized, its reduced point vortex should be placed at its centroid in its birth grid for improved accuracy.
The foregoing unified exposition of Wu [1–3] thus brings to completion the nonlinear theory for arbitrary
wing movement.

4 Conclusions

In conclusion, we have addressed all the issues concerning the generation of entire vortex distribution over
a flexible wing moving in arbitrary manner, with all the various nonlinear effects identified for general
applications to self-propulsion and related studies. The final exact form (37) is based on series expansion
of the residual integral to all orders in camber, its rapid convergence is expected (primarily due to the
smallness of the kernel g as stressed by Wu [3]) and can be easily assessed in practice for the accuracy of the
contributions from the nonlinear effects in increasing orders, as should be straightforward by computation.
These nonlinear effects are expected to play an active and important role in aerial and aquatic animal
locomotion.

Acknowledgment I am most appreciative for the gracious encouragement from Dr. Chinhua S. Wu and the American-
Chinese Scholarship Foundation.

References

1. Wu TY (2001) On theoretical modeling of aquatic and aerial animal locomotion. Adv Appl Mech 38:291–353
2. Wu TY (2005) Reflections for resolution to some recent studies on fluid mechanics. In Advances in engineering mechanics

– reflections and outlooks. World Scientific, pp 693–714
3. Wu TY (2006) A nonlinear unsteady flexible wing theory. Struct Control Health Monit 13:553–560
4. Stredie VG (2005) Mathematical modeling and simulation of aquatic and aerial animal locomotion. Ph.D. Thesis, California

Institute of Technology, Pasadena, CA
5. Hou TY, Stredie VG, Wu TY (2006) A 3D Numerical method for studying vortex formation behind a moving plate. Comm

Comput Phys 1:207–228



J Eng Math (2007) 58:279–287 287

6. Hou TY, Stredie VG, Wu TY (in press) Mathematical modeling and simulation of aquatic and aerial animal locomotion.
J Comp Phys [http://dx.doi.org/10.1016/j.jcp.2007.02.015]

7. von Kármán T, Sears WR (1938) Airfoil theory for non-uniform motion. J Aero Sci 5:379–390
8. Wagner H (1925) Über die Entstehung des dynamischen Auftriebes von Tragflügeln. ZAMM 5:17–35
9. Lighthill MJ (1971) Large-amplitude elongated-body theory of fish locomotion. Proc R Soc Lond B 179:125–138


	Abstract
	Abstract
	Introduction
	Wing movement with arbitrary changes in shape and trajectory
	A unified method of solution
	Conclusions
	Acknowledgment


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


